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LETTERS TO THE EDITOR 

J .  P H Y S .  A ( G E N .  P H Y S . ) ,  1 9 6 9 ,  SER.  2 ,  V O L .  2 .  P R I N T E D  I N  G R E A T  B R I T A I N  

Spectrum of clipped photon-counting fluctuations of 
Gaussian light 

Abstract. The analogue of a theorem of Van Vleck on the spectrum of clipped 
noise is formulated for use in optical spectroscopy. 

For simple optical fields a single probability distribution of integrated-intensity 
fluctuations is often sufficient to determine spectral parameters (Jakeman and Pike 1968, 
1969). Experimentally this method involves the determination of a photon-counting 
distribution p(n,  T ) ,  where T is the integration time (Jakeman et al. 1968). In  the case of 
more complex fields, when the optical spectrum is symmetrical, many such distributions 
for different values of T can still be used. Equivalent information, however, is contained 
in the autocorrelation function of the photon-counting fluctuations which, for stationary 
processes, may be written (n(0,  T ) ~ ( T ,  T ) ) .  This quantity is identical with the auto- 
correlation function of the integrated-intensity fluctuations (E(0,  T)E(T, 2') ), except 
when T = 0, and reduces to the Fourier transform of the intensity-fluctuation spectrum 
when T is much smaller than any correlation time of the field. The equivalence mentioned 
is a consequence of the relation, which may be shown without difficulty, 

d2 
d T2  
- {p (2) ( T ) )  = 2g '2) (T)  

where g(2 ) ( t )  is the normalized autocorrelation function (E(0 ,  O)E(t, O ) ) / ( E ) 2  and d2)( T )  
is the normalized second factorial moment of $(E, T ) .  

In  recent years the methods of Doppler and intensity-fluctuation spectroscopy, well 
known in the radar field (see, for example, Atlas 1964), have, with the advent of the laser, 
been applied successfully in the optical region of the spectrum (Cummins et al. 1963, Yeh 
and Cummins 1964, Alpert et al. 1965, Ford and Benedek 1965, and many others since), 
Most of these measurements have been made by spectrum analysis using a scanning 
electrical filter, although Cummins (1968) has used an analogue correlator. In  radar 
applications, however, more sophisticated techniques for the experimental determination 
of autocorrelation functions have been developed. I n  particular, the method of 'clipping' a 
fluctuating signal before correlation permits considerable simplification of the instru- 
mentation at a small cost in experimental time. For example, Van Vleck (1943) has shown 
that, if a Gaussian signal is represented by unity or zero according to whether it is above or 
below its mean value, then the autocorrelation function of this 'hard-limited' signal is 
2/n times the arc sine of the original one. We shall show that an analogous technique could 
prove equally useful in optical spectroscopy by deriving corresponding formulae for clipped 
photon-counting fluctuations. A full theoretical treatment will be presented elsewhere and 
we give here only a few of the more elementary results. 

We shall assume throughout that T is very small and drop it from our notation, so that 
( n ( O ) n ( ~ ) } / f f ~  = gC2)(T), except when T = 0. Here ff = ( n }  = % ( E } ,  where 0: is the 
efficiency of the detector. We also introduce the following notation for the clipped photon 
count : 

nk(t)  = 1 if n(t)  > k 
= 0 if n(t) < k. (2) 

Experimentally nk(t) can be measured with simpler equipment than n(t). We now need to 
relate correlations involving nk(t)  to g'2)(T). This is easily carried out for Gaussian fields, 
for which (Glauber 1963) 

g'2)(T) = 1 + ig'1'(T)]2 (3) 
A 6  41 1 
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where g(”(7) is the Fourier transform of the optical spectrum. In this case the generating 
function for the joint probability distribution of intensity fluctuations can be obtained by 
Laplace transformation of the expression given by Siegert (1943). The  result is (see also 
BCdard 1967) 

and defines the joint photon-counting distribution as follows : 

Q(Ss’) = [ i i 2 S S ’ { l  - Ig‘l’(T)/z}+fi(s+.Y’)+ 11-l (4) 

As a simple example of the use of these formulae, we consider the case of double clipping at 
zero photon number. The  appropriate normalized correlation function is given by 

In  addition to (4) and ( 5 ) ,  we have used the generating function for the single probability 
distribution of intensity fluctuations, (l+Es)-’.  If E < 1, ( 6 )  reduces to g(2)(T),  while, 
if ?i 9 1, it approaches a constant value of unity and no spectral information is gained from 
this extreme form of clipping. The other example we consider in this letter is single clipping 
at an arbitrary photon number k. The result obtained using (4) and ( 5 )  is 

In  this case, for all values of E ,  little spectral information is lost provided that clipping is 
carried out near the mean. If k is exactly equal to E ,  the right-hand side again becomes 

The  experimental use of these ideas will be discussed more fully in a future publication. 

Royal Radar Establishment, E. JAKEMAN 
Great Malvern, E. R. PIKE 
Worcs. 3rd January 1969, in revised form 27th January 1969 
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